2002 Vol. 4, No. 24 ⁴²⁰⁹-**⁴²¹²**

ORGANIC LETTERS

Synthesis, Incorporation into Triplex-Forming Oligonucleotide, and Binding Properties of a Novel 2′**-Deoxy-***C***-Nucleoside Featuring a 6-(Thiazolyl-5)benzimidazole Nucleobase**

Dominique Guianvarc'h,† Jean-Louis Fourrey,† Rosalie Maurisse,‡ Jian-Sheng Sun,*,‡ and Rachid Benhida*,†,§

*Institut de Chimie des Substances Naturelles, CNRS, 1 a*V*enue de la Terrasse, 91198 Gif-sur-Y*V*ette, France, Laboratoire de Biophysique, UR 565 INSERM UMR 8646 CNRS, Muse*´*um National d'Histoire Naturelle, 43 rue Cu*V*ier 75231 Paris Cedex 05, France, and Laboratoire de Chimie Bioorganique, UMR 6001 CNRS, Uni*V*ersite*´ *de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France*

benhida@unice.fr

Received July 25, 2002

ABSTRACT

6-(Thiazolyl-5)benzimidazole (Bt) was designed as a novel nucleobase for the specific recognition of an inverted A'**T base pair in a triple helix motif. It was successfully incorporated into an 18-mer triplex-forming oligonucleotide (TFO) using the 2**′**-deoxy-***C***-nucleoside phosphoramidite 16. The triple helix binding properties of the modified TFO were examined by means of thermal denaturation experiments targeting an oligopyrimidine**'**oligopurine 26-mer DNA duplex containing an A**'**T base pair inversion.**

Pyrimidine oligonucleotides can interact, in a parallel orientation, with the oligopurine strand of an oligopyrimidine' oligopurine DNA duplex through the formation of T'AxT and C ⁺ GxC ⁺ t riplets.¹ This recognition process occurs in the major groove of the double stranded DNA (ds-DNA) and involves specific Hoogsteen hydrogen bonds between pyrimidines of the triplex forming-oligonucleotide (TFO) and the Watson-Crick purine bases of its cognate ds-DNA duplex.2 Accordingly, TFOs have attracted considerable interest because of their potential applications in gene expression modulation and gene targeting technologies.³ Unfortunately, when a single $A \cdot T$ or $G \cdot C$ base pair interrupts

an oligopyrimidine'oligopurine ds-DNA target, one observes a strong triplex destabilization.⁴ Hence, to date, the recognition of mixed purine/pyrimidine sequences remains a challenge. In the past few years, many TFO chemical modifi-

[†] Institut de Chimie des Substances Naturelles.

[‡] Laboratoire de Biophysique.

[§] Laboratoire de Chimie Bioorganique.

⁽¹⁾ The symbols ' and x indicate Watson-Crick and Hoogsteen hydrogen bonds, respectively.

^{(2) (}a) Le Doan, T.; Perrouault, L.; Praseuth, D.; Habhoub, N.; Decout, J. L.; Thuong, N. T.; Lhomme, J.; He´le`ne, C. *Nucleic Acids Res*. **1987**, *15*, ⁷⁷⁴⁹-7760. (b) Moser, H. E.; Dervan, P. B. *Science* **¹⁹⁸⁷**, *²³⁸*, 645-650. For reviews, see: (c) Thuong, N. T.; Hélène, C. *Angew. Chem., Int. Ed. Engl.* **1993**, 32, 666–690. (d) Frank-Kamenetskii, M. D.; Mirkin, S. M. *Engl*. **¹⁹⁹³**, *³²*, 666-690. (d) Frank-Kamenetskii, M. D.; Mirkin, S. M. *Annu. Re*V*. Biochem*. **¹⁹⁹⁵**, *⁶⁴*, 65-95. (e) Neidle, S. *Anti-Cancer Drug Des.* **¹⁹⁹⁷**, *¹²*, 433-442.

^{(3) (}a) Maher, J. L., III. *Cancer In*V*est*. **¹⁹⁹⁶**, *¹⁴*, 66-82. (b) Giovannangeli, C.; Hélène, C. *Antisense Nucleic Acid Drug Dev.* 1997, 7, 413-421. (c) Vasquez, K. M.; Wilson, J. H. *Trends Biochem. Sci.* **1998**, *23*, 4-9. (d) Praseuth, D. Guieysse-Peugeot, A. L.; Hélène, C. *Biochim. Biophys. Acta* **¹⁹⁹⁹**, *¹⁴⁸⁹*, 181-206.

^{(4) (}a) Mergny, J. L.; Sun, J. S.; Rougée, M.; Garestier, T.; Barcelo, F.; Chomilier, J.; Hélène, C. *Biochemistry* **1991**, *30*, 9791-9798. (b) Greenberg, W. A.; Dervan, P. B. *J. Am. Chem. Soc*. **¹⁹⁹⁵**, *¹¹⁷*, 5016-5022. (c) Best, G. C.; Dervan, P. B. *J. Am. Chem. Soc*. **¹⁹⁹⁵**, *¹¹⁷*, 1187-1193.

cations were reported to overcome this sequence limitation.5 The most promising approach consists of designing new modified bases able to form hydrogen bond contacts on both bases of the A⁻T or G⁻C Watson-Crick inverted base pairs in the major groove.⁶ We have recently reported on the selective recognition of A'T base pair in ds-DNA by pyrimidine-motif TFO containing an unnatural nucleoside **S**. ⁷ This new base analogue consists of two unfused aromatic rings (3-aminophenyl-thiazole) linked to a 2-deoxyribose unit by an acetamide motif. This interesting result led us to design a nucleobase analogue featuring a thiazolyl-benzimidazole system (**Bt**), to form selective hydrogen bonds with an inverted A'T base pair, as shown in Figure 1.

Figure 1. The proposed interactions between nucleobase **Bt** and the inverted **^A**'**^T** base pair.

Bt was designed on the basis of molecular modeling studies suggesting that a more rigid modified base would better stabilize triplex formation. Here we report on the synthesis of the new nucleobase **Bt** together with its incorporation into a TFO whose recognition properties have been thoroughly examined. To incorporate **Bt** into a TFO we needed to synthesize, as suggested by modelization, a 2′-deoxy-*C*nucleoside derivative of \mathbf{B}^t in which the deoxyribose unit is connected to the C2-position of the thiazolyl-benzimidazole aglycone **Bt** (Figure 1). A 2′-deoxy-C-nucleoside, in which the aglycone moiety is reduced to a single benzimidazole ring **B** (Figure 1), was also synthesized as a control.

A large number of synthetic approaches to a variety of C-nucleosides have been reported.8 In our case, the use of an aldol-type condensation between the 2-lithiated derivative of **5** and **6** with a suitably protected 2-deoxyribose appeared to be the most appropriate and straightforward procedure toward the preparation of **B**- and **Bt** -derived 2′-deoxy-*C*nucleosides. The key steps in this synthesis consisted of a Stille-type coupling, for the biaryl aglycone **Bt** formation (Scheme 1), and an aryl-aldol type condensation followed

^{*a*} Reagents and conditions: (i) Boc₂O, pyridine (100%); (ii) K_2CO_3 , MeI, DMF (95%); (iii) LDA, THF, -78 °C then Bu₃SnCl (>95%); (iv) NaH, DMF, ClSO₂NMe₂ (80%); (v) H₂, Pd/C, MeOH/ THF $(1/1)$ (>95%); (vi) TMSI, NaNO₂, TEBAC, CH₃CN (73%); (vii) Pd(PPh₃)₄, DMF, 60 °C (95%). *Compound 6 was obtained from benzimidazole following conditions (iv).

by a regioselective isopropylidene cleavage-ring closure (Schemes 2 and 3).

In this study, the *N*,*N*-dimethylsulfamoyl and *tert*-butoxycarbonyl protecting groups were used for the respective protection of the benzimidazole and aminothiazole rings of **Bt** , and they were found to be compatible with oligonucleotide solid-phase synthesis.

First, the biaryl nucleobase **Bt** was obtained, according to our previously described procedure, by a palladiumcatalyzed Stille cross-coupling reaction between derivative **2** and 5(6)-iodobenzimidazole **4** in 95% yield (Scheme 1).10 Compound **2** was obtained from 2-aminothiazole **1** in three steps (>90% overall yield), which consisted of (i) standard (5) Reviews: (a) Sun, J. S.; He´le`ne, C. *Curr. Opin. Struct. Biol*. **¹⁹⁹³**,

³, 345-356. (b) Doronina, S. O.; Behr, J. P. *Chem. Soc. Re*V*.* **¹⁹⁹⁷**, *²⁶*, ⁶³-71. (c) Gowers, D. M.; Fox, K. R. *Nucleic Acids Res.* **¹⁹⁹⁹**, *²⁷*, 1569- 1577 and references therein.

^{(6) (}a) Griffin, L. C.; Kiessling, L. L.; Beal, P. A.; Gillespie, P.; Dervan, P. B. *J. Am. Chem. Soc.* **¹⁹⁹²**, *¹¹⁴*, 7976-7982. (b) Koshlap, K. M.; Gillespie, P.; Dervan, P. B.; Feigon, J. *J. Am. Chem. Soc.* **¹⁹⁹³**, *¹¹⁵*, 7908- 7909. (c) Huang, C. Y.; Cushman, C. D.; Miller, P. S. *J. Org. Chem.* **1993**, *⁵⁸*, 5048-5049. (d) Huang, C. Y.; Miller, P. S. *J. Am. Chem. Soc.* **¹⁹⁹³**, *¹⁵*, 10456-10457. (e) Huang, C. Y.; Bi, G.; Miller, P. S. *Nucleic Acids Res.* **¹⁹⁹⁶**, *²⁴*, 2606-2613. (f) Lehmann, T. E.; Greenberg, W. A.; Liberles, D. A.; Wada, C. K.; Dervan, P. B. *Hel*V*. Chim. Acta* **¹⁹⁹⁷**, *⁸⁰*, 2002- 2022. (g) Obika, S.; Hari, Y.; Sekiguchi, M.; Imanishi, T. *Angew. Chem.*, *Int. Ed.* **²⁰⁰¹**, 40, 2079-2081.

⁽⁷⁾ Guianvarc'h, D.; Benhida, R.; Fourrey, J.-L.; Maurisse, R.; Sun, J. S. *J. Chem. Soc., Chem. Commun.* **²⁰⁰¹**, 1814-1815.

⁽⁸⁾ For reviews on the chemistry, biochemistry, and synthesis of *C*-nucleosides analogues, see: (a) Buchanan, J. G. *Prog. Chem. Org. Nat. Prod*. **¹⁹⁸³**, *⁴⁴*, 243-299. (b) Hacksell, U.; Daves, G. D., Jr. *Prog. Med. Chem.* **¹⁹⁸⁵**, *²²*, 1-65. (c) Postema, M. H. D. *Tetrahedron* **¹⁹⁹²**, *⁴⁰*, 8545- 8599. (d) Watanabe, K. A. *Chemistry of Nucleosides and Nucleotides*; Townsend, L. B., Ed.; Plenum Press: New York, 1994; Vol. 3, pp 421- 535. (e) Jaramillo, C.; Knapp, S. *Synthesis* **¹⁹⁹⁴**, 1-20. (f) Chaudhuri, N. C.; Ren, R. X. F.; Kool, E. T. *Synlett* **¹⁹⁹⁷**, 341-347. (g) Togo, H.; He, W.; Waki, Y.; Yokoyama, M. *Synlett* **¹⁹⁹⁸**, 700-716.

⁽⁹⁾ Benhida, R.; Lecubin, F.; Fourrey, J.-L.; Rivas, L.; Quintero, L. *Tetrahedron Lett.* **¹⁹⁹⁹**, *⁴⁰*, 5701-5703.

^{(10) (}a) Stille, J. K. *J. Am. Chem. Soc*. **¹⁹⁷⁹**, 4992-4998. (b) Stille, J. K. *Angew. Chem.*, *Int. Ed. Engl*. **¹⁹⁸⁶**, 25, 508-524.

treatment with $Boc₂O$, (ii) methylation of the resulting carbamate, and (iii) stanylation at the thiazole C-5 position using LDA in THF, then trapping of the intermediate with tributyltin chloride. The 5(6)-iodo regioisomers **4**¹¹ derived from 5(6)-nitro-benzimidazole **3**: (i) benzimidazole protection (ClSO₂NMe₂/NaH/DMF), (ii) catalytic hydrogenolysis of the nitro function, and finally (iii) transformation of the obtained amine to the target iodo-derivatives $4 \frac{(NaNO_2)}{2}$ TMSI)¹² in 73% yield (Scheme 1).

Next, and as shown in Scheme 2, the protected **Bt** and benzimidazole **B** were lithiated by LDA in THF at -50 °C

a Reagents and conditions: (i) LDA, THF, -78 °C then **7** (59– 61%); (ii) MsCl, Et3N, DMAP (88-90%).

to give the corresponding 2-lithio derivatives in quantitative yield.13 These 2-lithiated heterocycles were allowed to react with the known deoxyribose precursor **7**¹⁴ to afford the corresponding pentitol derivatives **8** and **9** in 60% yield as a mixture of *R*/*S* diastereoisomers in 7/3 ratio, respectively, as determined by ¹H NMR. The diastereoisomers of each compounds **8** and **9** were then easily separated by silica gel flash chromatography.15 Mesylation of **8** and **9** with methanesulfonyl chloride afforded the 1-*O*-mesyl derivatives **10** (88%) and **11** (90%), respectively. To keep the required *N*,*N*dimethylsulfamoyl and *tert*-butoxycarbonyl protecting groups on the aglycone moiety for oligonucleotide solid-phase synthesis, we needed to use mild conditions to eliminate the isopropylidene group of compounds **10** and **11**. Interestingly, SnCl2 treatment of 1′-*O*-mesyl derivatives **10***S* and **11***S* in methylene chloride at room temperature resulted in a clean conversion to the cyclized product **12** and **13**, respectively, (60% yield) following a cleavage-ring closure process (Scheme 3).

a Reagents and conditions: (i) $SnCl₂·2H₂O, CH₂Cl₂ (58-62%)$; (ii) Bu₄NF, THF (85-87%); (iii) DMTCl, Et₃N, DMF (70-88%); (iv) $CIP(OCH_2CH_2CN)(Pr)_2$, Hunig's base, CH_2Cl_2 (63–73%).

Under these mild conditions, the *S*-isomers of **10** and **11** led to the cyclized products $\mathbf{12}(\beta)$ and $\mathbf{13}(\beta)$, respectively, whereas the R -isomers afforded the corresponding α -anomers $(12(\alpha)$ and $13(\alpha)$, respectively, see Supporting Information). In view of these data, it appears that pentitols **10** and **11** cyclize, under $SnCl₂$ treatment, according to an $SN₂$ process.¹⁶ The β -anomeric configuration of 12 and 13 was assigned by 2D-NOESY experiments that showed, as expected for a *â*-configuration, a clear NOE correlation between H1′ and H4′. ¹⁷ The 5′-TBDPS group cleavage leading to the target **B**- and **Bt** -derived 2′-deoxy-*C*-nucleosides **14** and **15** was achieved by treatment of **12** and **13** with Bu4NF in THF. Finally, the preparation of the phosphoramidite building blocks **16** and **17**, which were used for TFO synthesis, was accomplished by successive 5′-dimethoxytritylation and 3′ phosphitylation of nucleosides **14** and **15**, respectively.

The phosphoramidites **16** and **17** were then incorporated into 18-mer TFOs (III) at the internal position Z (Figure 2) using automated oligonucleotide synthesis. The protected oligonucleotides thus obtained were purified by reverse phase HPLC, and the protecting DMT, SO_2NMe_2 and Boc groups

⁽¹¹⁾ The iodo derivative **4** was obtained as a mixture of 5- and 6-regioisomers in nearly 40/60 ratio, respectively. Both regioisomers will give the same oligonucleotide after cleavage of the sulfamoyl protecting group. To facilitate the interpretation of the ¹H and ¹³C NMR spectra, we only used the 6-isomer in the next steps of our synthesis.

⁽¹²⁾ Lee, J. G.; Cha, H. T. *Tetrahedron Lett.* **¹⁹⁹²**, *³³*, 3167-3168.

⁽¹³⁾ We have verified that this lithiation occurred exclusively and quantitatively at the C-2 position of the benzimidazole moiety by trapping the lithio derivatives with hexachloroethane.

⁽¹⁴⁾ Joos, P. E.; Esmans, E. L.; Domisse, R. A.; De Bruyn, A.; Balzarini, J. M.; De Clercq, E. D. *Hel*V*. Chim. Acta* **¹⁹⁹²**, *⁷⁵*, 1613-1620.

⁽¹⁵⁾ The *R* and *S* configurations of compounds **8** and **9** were determined on the basis of the anomeric stereochemistry of their cyclized products **12** and **13**, respectively (NOESY experiments).

⁽¹⁶⁾ Under more drastic conditions (TFA, H₂O, 60 °C),¹⁴ the cyclization occurred but with (i) concomitant cleavage of all the protecting TBDPS, SO2NMe2 and Boc groups and (ii) epimerization of the C-1′ stereocenter, which suggested a partial SN_2 -type mechanism for the outcome of this reaction.

⁽¹⁷⁾ In the same way, we observed for the other anomers $(12(\alpha))$ and **13**(α) obtained from **10***R* and **11***R*, respectively) clear NOE H1[']-H3['] and H1′-H5′ correlations, in accordance with an α configuration.

Figure 2. Sequence of the studied triplexes I. IIxIII ($X \cdot Y = A \cdot T$ and $Z = G$, B^t , or B) and melting temperature curves. Conditions:
I^{-II} (1.2 μ M) III (1.5 μ M) in 10 mM cacodylate buffer (pH.6) I'II (1.2 μ M), III (1.5 μ M) in 10 mM cacodylate buffer (pH 6) containing 100 mM NaCl, 10 mM $MgCl₂$, and 0.5 mM spermine.

were cleanly cleaved by treatment of the oligonucleotides with aqueous TFA solution (10%). To our knowledge, this is the first example of oligonucleotides synthesis in which *N*,*N*-dimethylsulfamoyl-protected nucleobases were involved.

The triple helix binding properties of these TFOs were examined by means of thermal denaturation experiments with the oligopyrimidine'oligopurine 26-mer ds-DNA (I'II) containing an A \cdot T interruption (X \cdot Y = A \cdot T) (Figure 2).

We observed that the T_m value obtained for the triplex containing an A^{\cdot}Tx**B**^{\cdot} triplet (*T*_m = 43 °C) is very close to that obtained with **G**, which is known to form the most stable natural triplet (A \cdot Tx**G**, T_m = 45 °C). However, as it is wellknown that **G** involves one hydrogen bond with **T** in A^{\cdot TxG} triplet (NH₂(G)-O4 (T)),^{5c} our **B^t** nucleobase most likely does not involve three hydrogen bonds as illustrated in Figure 1. Interestingly, the replacement of B^t by the benzimidazole nucleobase **B** caused a dramatic destabilization of the triplex ($\Delta T_{\text{m}} = -9$ °C from A \cdot Tx**B**^t to A \cdot Tx**B**) (Figure 2). This result shows clearly the implication of the methylaminothiazole moiety of **Bt** in the recognition process, which has not been yet elucidated.

To determine the specificity of the nucleobase **Bt** , the 18 mer TFO (III, $Z = B^t$) was also screened against duplexes
containing the three other possible base pairs $(X \cdot Y = T \cdot A)$ containing the three other possible base pairs $(X \cdot Y = T \cdot A$, ^C'G and G'C) (Table 1). It was observed that (i) the

nucleobase **Bt** can moderately discriminate a Pu'Py from a Py'Pu base pair (A'Tx**Bt** and G'Cx**Bt** vs T'Ax**Bt** and C **·GxB^t**) and (ii) that **B^t** provides a +3 °C triplex stabilization
in the case of a G**·C** interruption compared to the best base in the case of a G'C interruption compared to the best base triplet made of the natural bases G'Cx**T**. The moderate discrimination of nucleobase **Bt** for all four base pairs argues for a non-sequence-specific interaction, i.e, third strand base stacking/intercalation.

In conclusion, we have synthesized a novel 2′-deoxy-Cnucleoside analogue featuring a highly functionnalized aglycone moiety (**B***^t*) and shown the *N*,*N*-dimethylsulfamoyl protecting group to be compatible with oligonucleotide synthesis. The new nucleobase was successfully incorporated into a TFO using automated oligonucleotide synthesis. The triplexes featuring an A'Tx**Bt** triplet or the most stable natural triplet A'Tx**^G** were shown to be of comparable stability. In view of these results, **Bt** represents an interesting starting point for the synthesis of other nucleobases, for structureaffinity relationship studies which is currently in progress.

Acknowledgment. The authors thank M. Thomas for oligonucleotides synthesis, Dr. J.-C. Blais for characterization of oligonucleotides, and CNRS for a doctoral fellowship (BDI) to D.G.

Supporting Information Available: Experimental procedures and spectroscopic characterization (1H, 13C, 31P (for phosphoramidites) NMR and MS) of all new compounds. Also automated oligonucleotides synthesis, melting temperature experiments, and MALDI-TOF/MS characterization of oligonucleotides. This material is available free of charge via the Internet at http://pubs.acs.org.

OL026609H